
[WEA] Linear Temporal Logic applied to
component-based software architectural models

specified through ρarq calculus

Oscar Javier Puentes and Henry Alberto Diosa

Research Group ARQUISOFT, Faculty of Engineering,
Universidad Distrital Francisco José de Caldas.

Bogotá, Colombia
http://arquisoft.udistrital.edu.co

Abstract. This paper reports a mechanism to incorporate Linear Tem-
poral Logic (LTL) for a component-based software architectural configu-
ration specified by the ρarq-calculus. This process was made through the
translation of the system definition, structure and behavior, to Atomic
Propositions Transition System (APTS), upon which, the verification of
one property was performed using LTL. The PintArq software applica-
tion was extended to support this mechanism. One example ilustrates
the verification of responsiveness, a subtype of liveness property.

Keywords: ρarq calculus, component-based software, architectural exe-
cution flow , linear temporal logic, model checking.

1 Introduction

On software architectures, a challenging area of growing interest has been to find
mathematical tools that allow checking properties and quality aspects. There are
some developments about formal methods [14], i.e., λ-calculus [4] for sequential
processes, π-calculus [13][18] for concurrent processes, and recently, ρ-calculus [7]
for object oriented paradigms [22]. The ρ-calculus has provided a foundation to
model the object oriented paradigm and the Unified Modeling Language (UML)
[16][12].

The ρarq-calculus [10] was proposed to specify structural and behavioral as-
pects about component-based software architectures; furthermore, it’s a tool to
check desirable properties such as correctness [9]. Currently, a software applica-
tion allows to visualize the software architectural execution flow specified by this
calculus. This application receives a set of formulas as input and the software
shows each stage of the execution [19].

The approach used in this project aims to apply (LTL) to specify properties
and check models that satisfies them [3]. This work addresses on a subtype
liveness property called ”responsiveness”.

At first, a conceptual frame is presented, then a translation method to Atomic
Proposition Transition System using LTL operators is ilustrated, subsequently

an example is executed to show the checking process and by last, the new version
of software application is described.

2 Conceptual context

2.1 ρarq calculus

ρarq-calculus is an architectural description language (ADL) with formal no-
tation to specify structural and dynamic aspects of component-based software
architectures. Table 1 describes ρarq-calculus syntax. A more detailed description
can be obtained in [10][9] [19].

Table 1. Syntax of ρarq calculus. Source: [20]; [15]; [21]; [13]; [10];[19]

SYMBOLS MEANING

x, y, z, . . . variables Variables only hold names.
a, b, c, . . . names Names and variables are named references.
u, v, w, . . . ::= x|a references

EXPRESSIONS INTERPRETATION

E, F,G ::= > Null component Component that doesn’t execute any action.
| E ∧ F Composition It represents concurrent execution of E and F .

| E(int) Interior of component E No observable part of E
| if(C1 · · ·Cn) else G Committed choice combinator This representation of components with

alternative executions in the ρarq−Calculus is a derivation of the Guarded
Disjunction proposed in the early extended versions of γ − Calculus [20]

[21] is a useful generalization of conventional conditional1.

| x :: y/E Abstraction It represents receiving a symbolic entity by means of x, it can
replace y in E, as long as this entity is free in the scope of component E.

| xy/E Application xy/E expresses sending y by means of x and continuing with
the execution of E.

| τ/E Internal reaction It is represented with τ/E, this term doesn’t have its
explicit counterpart in the original ρ−Calculus. It might demand specifying
many transitions as internal reactions to limit the quantity of observations
[11].

| ∃wE Declaration ∃wE introduces a reference w with scope E.
| x : y/E Replication x : y/E can be expressed as:

x : y/E ≡ x :: y/E ∧ x : y/E
It produces a new abstraction, ready for reaction and it allows of replicating
another when necessary.

| E> E’s succesful execution Observable succesful execution of E

| E⊥ E’s non succesful execution Observable non succesful execution of E
| OSO(E) do F else G On Success Of If E executes with succes then it redirects to execute archi-

tectural expression F else it redirects to execute the architectural expression
G.

| !OSO(E) do F else G Replication of OSO rule Consecutives observations of “On Succes Of ”
rule on the same component.

φ, ψ ::= >̇ Logical truth Constraints as φ, ψ can resolve to true (>̇).
| ⊥ Logical false Constraints as φ, ψ can resolve to false (⊥).
| x = y Equational restriction Constraints can correspond to equational con-

straints (x = y) with logical variables. The information about values of
variables can be determined by means of equations that can be seen as con-
straints. The equations can be expressed as total information (i.e.: x = a)
or partial information(i.e.: x = y); taking into account that the names are
only values loaded to variables. [21].

| φ∧̇ψ Conjunction of constraints Constraints can correspond to conjunction
(φ∧̇ψ); the conjunction is congruent to constraints’ composition. This leads
to constraints that must be explicitly combined by means of reduction [15]:

| ∃̇φ Existential quantifier The existential quantification over constraints is con-
gruent to the variables declaration over constraints (∃xφ).

It uses structural congruence (≡) from ρ calculus, that holds for the least con-
gruence (least logical relationship of equivalence) of the axioms and the reduction
rules that represent the semantics (See Table 2). About new axioms showed on
Table 2: Observable replication, it allows to do successive observations in the
component execution and, Observable Successful/Failure that allows to do
replacements in a component inputs and execute it. A successful/failure obser-
vation can be represented by (E>, E⊥) respectively.

Table 2. Structural congruence rules of ρarq calculus. Source: [15]; [10]; [19]

(α − conversión) Change of bounding references by free references

(ACI) ∧ It’s associative, conmutative and satisfies E ∧ > ≡ E
(Interchange) ∃x∃yE ≡ ∃y∃xE
(Scope) ∃x E ∧ F ≡ ∃x(E ∧ F) if x /∈ FV(F)

(Equivalence of Constraints) φ ≡ ψ if φ |=|∆ ψ y FV(φ) = FV(ψ)

(Observable replication) !OSO(E) do F else G ≡ OSO(E) do F else G ∧ !OSO(E) do F else G

(Observable Succesful/Failure) [v/w]E(int) ≡ >̇ ∧ if [(>̇ then E>) ,

(>̇ then E⊥)]
else (>)

Calculus models behavior of component-based architectures through its opera-
tional semantic. So then, the calculus uses labeled transition systems (LTS) to
show the evolution in the execution of the architecture through the operational
semantic defined for this purpose. Additionally, it has a graphical notation based
on stereotyped extension of UML 2.x that translates to calculus [10]. The rules

Table 3. Rewriting rules of ρarq calculus. Source: [15]; [10]; [19]

(Aρarq) φ ∧ x : y/E ∧ x′z/F −→ φ ∧x : y/E ∧ [z/y]E(int) ∧ F si φ |=∆ x = x′,V(z)∩BV(E(int)) = ∅
(Cρarq) φ1 ∧ φ2 −→ ψ if φ1 ∧̇ φ2 |=|∆ ψ

(Combρarq) φ ∧ if (C1) . . . (Cn) else F fi −→
{
Ek, if φ |=∆ ψk
F, if φ |=∆ ¬ψk ∀k = 1, 2, . . . , n

Donde Ck ::= ∃x(ψk Then Ek) ; k = 1, 2, . . . , n

(Ejecτ)

(a) [OSO(E) do F else G] ∧ E> −→ F,Because of succesful execution of E component

(b) [OSO(E) do F else G] ∧ E⊥ −→ G,Because of non succesful execution of E component

at Table 3 specifying formally the progress in the execution of an architecture
and they can be interpreted in this way:
- Aρarq : Application, executes a concurrent combination of an abstraction with
a replication that instances another application. This rule models remote proce-
dures calls passing parameters within a component.
- Cρarq : Constraint combination allows to combine restrictions with the purpose
to extend or to simplify the rule set in the repository.
- Combρarq : Committed choice combinator triggers the execution of an Ek com-
ponent, if the context constraint is enough strong and it allows to deduce from
φ , the guard ψk in the conditional. This rule chooses a component Ek within a
group, as long as it holds the defined guard.
- Ejecτ : It sets the observational success/failure execution of a component. This
is made with the purpose to represent a component as a black box , where the
relevant part is the final behavior in its execution but not the internal processing,
that is nos visible to an external observer.

2.2 Linear Temporal Logic

Linear Temporal Logic is built from the syntax and semantic described in CTL*
[8] with the constraint that it does not use quantifiers. Its formulas are uniquely
path-oriented and the representation does not generates a tree structure but one
unique path.

This logic has been used to model synchronous systems whose components
act step by step. This means, a transition progress in discrete time; the present
moment is defined as the actual state and the next moment is the successor.
The system is observable in 0, 1, 2, . . . moments. A graphical representation over
some of the LTL operators is shown in Figure 1.

Fig. 1. Graphical representation of LTL operators. Adapted from [8] and [3]

Syntax and semantic to check temporal properties. Syntax and semantic
used to specify temporal properties of an software architectural model described
through calculus were based on [5] to specify properties in a reactive system.
A formula was built to specify LTL properties ; this formula was composed by
atomic propositions represented by ai ∈ AP where ai is a state label (or an
alphabet letter) in the system, the basic boolean connectors ∧,∨,¬ (and, or,
not), the basic temporal modalities ©,

⋃
(next, until) and ϕ, ϕ1 , ϕ2 which

are LTL formulas. Thus, a LTL formula can be expressed through Bakus-Naur
notation:
ϕ ::= true | ai |ϕ1 ∧ ϕ2 | ¬ϕ | © ϕ |ϕ1

⋃
ϕ2

Rules of logical equivalence. The implication and double implication logi-
cal connectors can be expressed through the basic operators (∧, ∨). Likewise,
the compound temporal modalities as ♦(eventually), �(globally), ♦�(eventually
forever) and �♦ (infinitely often) can be rewritten through the basic operators.
These rules are:

ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2) (1) ϕ1 → ϕ2 = ¬ϕ1 ∨ ϕ2 (2)

ϕ1 ↔ ϕ2 = (ϕ1 → ϕ2) ∧ (ϕ2 → ϕ1) (3) ♦ϕ = true
⋃

ϕ (4)

�ϕ = ¬♦¬ϕ (5) �♦ϕ = �(true
⋃

ϕ) (6)

♦�ϕ = true
⋃

(�ϕ) (7)

2.3 Definitions

Some useful definitions were established by [5] and [3]:

– AP is the atomic proposition set of the system, it means: AP = {a0, a1, a2, ..., an}
– P(AP) is the power set over AP (set made up of all subsets over AP), it means:

P(AP) = {{}, {a0}, {a1}, {a2}, ..., {an}, ..., {a0, a1}, {a0, a2}, ..., {a0, .., an}...{a1, a2}...}

– A word is a sequence of elements over a set. For example: a word over AP would be a0a2 or
over P(AP) would be {a0}{a1}{a0, a1}{a2}

– APINF is the infinite set composed by all words over the power set P(AP). For example:

APINF = {{a0}, {a0}{a1}, {a0}{a1}{a0}, {a0}{a1}{a0, a1}, {a0}{a1}{a0, a1}{a0}{a2}{a0, a2}...}

– A property defined over AP is a subset of APINF .
– Traces(ai) is the path set which initial state is ai. Traces(ai) ⊆ APINF
– Traces(ST) is the path set which all initial states in the transition system. Traces(ST) ⊆
APINF

With these definitions, an example of a property specification over a model can
be expressed as: a1 is always true.

This property can be represented as {A0A1A2...An ∈ APINF } where each
Ai contains {a1}, in this case, a set of words that satisfies the property con-
sists in: {{a1}, {a1}{a0, a1}, {a1}{a1}{a1, a2}, {a1}{a0, a1, a2}, ...}. In this way,
a formula specified in LTL describes subsets of APINF , it means that, a given
formula LTL ϕ, can be associated with a words set identified with the expres-
sion Words(ϕ) whose elements belong to the sequence of states reached in each
transition. If ϕ is a LTL formula:

ϕ −→ Words(ϕ) ⊆ APINF ; where Words(ϕ) is the set that satisfies the formula:

ϕ: Words(ϕ) = {σ ∈ APINF |σ satisfies ϕ}

Verification rules. To determine if a word satisfies a formula, the next rules
are applied:

With the word σ established: Wordσ : A0A1A2...An ∈ APINF

– Each word in APINF satisfies true.

Words(true) = APINF (8)

– σ satisfies ai, if ai ∈ A0.

Words(ai) = {A0A1A2... | ai ∈ A0} (9)

– σ satisfies ϕ1 ∧ ϕ2, if σ satisfies ϕ1 and σ satisfies ϕ2.

Words(ϕ1 ∧ ϕ2) = Words(ϕ1) ∩ Words(ϕ2) (10)

– σ satisfies ϕ1 ∨ ϕ2, if σ satisfies ϕ1 or σ satisfies ϕ2.

Words(ϕ1 ∨ ϕ2) = Words(ϕ1) ∪ Words(ϕ2) (11)

– σ satisfies ¬ϕ, if σ not satisfies ϕ.

Words(¬ϕ) = Words(ϕ)
′

(12)

– σ satisfies ©ϕ, if A1A2... satisfies ϕ.

Words(©ϕ) = {A0A1A2... |A1, A2 ∈ Words(ϕ)} (13)

– σ satisfies ϕ1
⋃
ϕ2, there is j such as AjAj+1... satisfy ϕ2 and for all 0 ≤ i < j AiAi+1...

satisfy ϕ1.
Words(ϕ1

⋃
ϕ2) = {A0A1A2... | ∃ j.AjAj+1... ∈ Words(ϕ2) (14)

and ∀ 0 ≤ i < j, AiAi+1... ∈ Words(ϕ1)}

– σ satisfies ♦ϕ = true
⋃
ϕ, if there is a j such as AjAj+1... satisfies ϕ and for all 0 ≤ i <

j AiAi+1... satisfies true.

Words(♦ϕ) = {A0A1A2... | ∃ j.AjAj+1... ∈ Words(ϕ) (15)

for ∀ 0 ≤ i < j.AiAi+1... ∈ Words(ϕ)

– σ satisfies �ϕ = ¬♦¬ϕ, for this case it decomposes in:
1. σ satisfies ♦¬ϕ, if there is a j such as AjAj+1... satisfies ¬ϕ
2. σ satisfies ¬♦¬ϕ, if σ not satisfies ♦¬ϕ.
3. σ satisfies ¬♦¬ϕ, if for all j such as AjAj+1... satisfies ϕ

Words(�ϕ) = {A0A1A2... | ∀ j.AjAj+1... ∈ Words(ϕ) (16)

3 The method

The architectural configuration showed in the Figure 2 was used to specify and
verify the “responsiveness ”property .

Fig. 2. Complex assembly of components . Source [10]

Formulas that specifies this configuration through the ρarq-calculus are:

E
def
= [(pE : x/xsE)] ∧ ∃lE [(rE :: y/ylE) ∧ (lE :: iE/E

(int)
)] (17)

F
def
= (pF : z/zsF) ∧ (pFe : w/wsFe) (18)

M
def
= ∃lM [(rM :: y/ylM) ∧ (lM :: iM/M

(int)
)] (19)

T
def
= [(pTe : n/nsTe)] ∧ ∃lT [(rT :: q/qlT) ∧ (lT :: iT /T

(int)
)] (20)

CFE = rEpF (21)

CFM = rMpF e (22)

CET = rT pE (23)

CEM = rMpEe (24)

CTM = rMpT e (25)

The system’s initial configuration is:

S = [F ∧ OSO(F) do CFE ∧ E else ∧ CFM ∧ M]

∧ [OSO(E) do CET ∧ T else CEM ∧ M]

∧ [OSO(T) do T else CTM ∧ M]

(26)

3.1 APTS Generation

Atomic Propositions Transition System (APTS) represents the system states
associated to atomic propositions. This model was generated by the architec-
ture definition (components and connectors) and execution rules provided by
the ρarq-calculus.

First step: Identify the source components. Only they can start the
execution. Each component inside the model represents a state: its execution (i.
e. E). Transitions that they can take represent the successful or failure execution
states (i. e. E> and E⊥ respectively), this behavior is shown in the Figure 3.

Fig. 3. APTS representation of a component execution.

Second step: Obtain transitions between states. It is done capturing
system’s behavior through evaluation of observation rules disposed in the for-
mula. An observation rule is described as:

OSO(F) do [CFE ∧ E] else [CFM ∧M] (27)

From this rule it can be built links between states. If F executes successfully it
communicates with E, else it links with M . In the arrival of new components,
the first step is repeated and the APTS is developed until there are no more
components to analyze.

Third step. In the moment to achieve end states (terminal states) they in-
dicate a global state of the system. It proceeds to set if the system as a whole
is executed or not successfully. This state only can be obtained from the termi-
nal nodes whose execution represents one of the success or failure global final
states. When it reaches one of these states, it connects again with the nodes that
represent the source components for evaluating a new execution. (Figure 4).

3.2 Verification of a temporal property

Atomic properties were made up from the system states and the defined opera-
tors were used for this purpose. One property was specified in order to check if
the system could fulfill it. For example (with previous APTS):

ϕ = F → ♦(T> ∨M>) (28)

This property defines if F executes, eventually in the future M or T will
execute successfully.

Fig. 4. Full APTS representation

A temporal property specifies paths (states sequences) that a transition sys-
tem should expose (states that can be observable); these properties specify de-
sired or allowable behavior expected from the system.

Formally, a property P is a subset of APINF where AP is the set of atomic
propositions and APINF represents the words set that come from infinite words
concatenation in P(AP). Therefore, a property is an infinite words set over
P(AP) [3] or in another way, if the execution of a program is a σ infinite states
sequence , it is said that property P is true in σ if the sequences set defined by
the program are contained in the property P [1].

One of these properties is named liveness. This property declares intuitively
that ”something good” eventually will happen or that a program eventually
will reach a desired state [17,2,6]. Specifically, the liveness property shows one
of the next behaviors: Starvation freedom, Termination and Guaranteed ser-
vice/Responsiveness.

For this work was proposed the verification of the ”Responsiveness” property,
a subtype of liveness property. To check this property, the experiment proceeded
from the simplest case until to reach the most complex case.

For ϕ = F> → ♦M>

The following sets are by definition:

AP = {F, F>, F⊥, E,E>, E⊥, T, T>, T⊥,M,M>,M⊥, success, failure}
APINF = {{}, {F}, {F>}, {F⊥}, {E}, {E>}, {E⊥}, {T}, {T>}, {T⊥}, {M}, {M>}, {M⊥}

, {F}{F>}, {F}{F⊥}, {F}{F>}{E}, ...}

The system complies the formula ϕ if:

Words(ϕ) = Words(F> → ♦M>) and Traces(TS) ∩ Words(ϕ)

Applying the rules of composition, the formula can be expressed in sub-
formulas that can be evaluated in the following sequence:

Words(ϕ) = Words(F> → ♦M>); applying (2)

Words(ϕ) = Words(¬F> ∨ ♦M>); applying (11)

Words(ϕ) = Words(¬F>) ∪ Words(♦M>); applying (12)

Words(ϕ) = Words(F>)′ ∪ Words(♦M>); applying (4)

Words(ϕ) = Words(F>)′ ∪ Words(true
⋃
M>)

the first terms set was described by extension:

Words(ϕ) = {{F}, {F}{F⊥}, {F}{F⊥}{M}, {F}{F⊥}{M}{M>},
{F}{F⊥}{M}{M>}{success}, {F}{F⊥}{M}{M⊥},
{F}{F⊥}{M}{M⊥}{¬success}} ∪ Words(true

⋃
M>); applying (14)

...

The process continues recursively until sets of states sequence that satisfy
the specified property are found.

Likewise, the sequences that must be delimited inside the set of possible
paths offered by the APTS must be filtered, therefore must be satisfied that
Traces(TS) ∩ Words(ϕ), where Traces(TS) is the set of possible paths in the
transition system that are determined for the initial states in the system.

In this way, only paths that make true the temporal property for the APTS
with the paths that begin with the initial states are filtered. The Figure 5 shows
the relationship between these elements; the intersection area represents the
elements that satisfy the property.

Fig. 5. Relationship between Traces(TS) and Words(ϕ) Source [5]

In this system it can be seen there are paths that move to successful execu-
tion of M (M>): {F}{F>}{E}{E>}{T}{T⊥}{M}{M>} and thus, property is
satisfied for the system. On the other hand, a property that the system does not
satisfy is the following: ϕ =!(F → ♦¬success). It can be identified that not all

paths lead to the successful execution and there is at least one path that flows
towards an unwanted state of failure.

4 Results and discussion

4.1 Mapping architectural specification to APTS

One of the worthy results in this job is the achieved method to map structural
and behavioral architectural configurations using the ρarq-calculus to an ATPS
that allows checking properties using LTL formulas. This effort is pertinent for
academic communities that work and research about model checking possibili-
ties. This result indicates that ρarq-calculus expressions are translatable to LTL
formulas and the other properties could be analyzed.

4.2 PintArq extension to check LTL properties

In the first version of the software, an architectural execution flow visualizer
was achieved with the work described in [19] and it was named PintArq. It was
built to support the method described in Section 3. To implement this solution,
the software process development phases were carried out with their functional,
structural an dynamic models that are completely documented and for free access
in the ARQUISOFT Research Group portal. The prescriptive architecture of the
application is illustrated in Figure 6. This architecture is composed for the next
modules:

Original modules:

Interpreter: It identifies structural elements and it transforms architectural expressions to
UML component-configuration.

Rewriter: It obtains original expressions and rewrites them which represents reactions in the
system.

Architect: It generates components and connectors from interpreted structural elements.
Drawer: It shows on screen, component-based architecture through an UML Component dia-

gram (in SVG image format).

Transformer: It transforms architecture in an XMI file for exchange with other systems.

Modules added in this project:

APTS Generator: It creates the APTS based on the architecture (components and connectors)
and initial calculus expressions.

Property Checker: It takes property provided for the user and identifies whether it is satisfied
by the system. If property is not satisfied, it creates a counter-example path that represents this
behavior.

Model checking viewer: It shows on screen, the generated APTS and the possible path in

case the property is not satisfied.

To extend the PintArq tool with new possibilities to analyze software component-
based architectures from model checking perspective is very interesting and it
opens new research motivations to apply this proposal to real software architec-
tures. Nowadays, the Pintarq tool must be extended to graphical modelling of
real software systems or the tool could be extended with a models interchange

module. This module should import real software component-based models and
it should translate these models to ρarq-calculus. With this translation the soft-
ware architect could use the analysis capabilities of PintArq tool.

Fig. 6. PintArq’s prescriptive architecture with additional components.

To obtain the detailed documentation about this project you can visit http:
//arquisoft.udistrital.edu.co, option: ”Proyectos finalizados”.

5 Future work

Several scenarios on which it can start or continue related work are:

1. Expand the scope of the mechanism to verify temporal properties as Safety,
Deadlock detection or Starvation freedom .

2. Optimize the implementations to find the shortest path that the counterex-
ample illustrate when the model does not satisfy the specified property.

3. Improve the implementation of the extension in PintArq to visualize the
counterexample in the syntax of the formal ρarq-calculus and not in the
LATEXformat.

4. Expand the analysis of possibilities to other temporal logics: Branch tempo-
ral logic, intuitionistic temporal logic and temporal multi-valued logic.

References

1. Alpern, B., Schneider, F.B.: Defining liveness. Information Processing Letters
21(4), 181–185 (1985)

2. Alpern, B., Schneider, F.B.: Recognizing safety and liveness. Distributed Comput-
ing 2(3), 117–126 (1987)

3. Baier, C., Katoen, J.P.: Principles of Model Checking (2008)
4. Barendregt, H., Barendsen, E.: Introduction to lambda calculus. Nieuw archief voor

wisenkunde 4(March), 337–372 (2000), http://homepages.nyu.edu/{~}cb125/

Lambda/barendregt.94.pdf

5. Biswas, S., Deka, J.K.: NPTEL :: Computer Science and Engineering - Design Ver-
ification and Test of Digital VLSI Circuits (2014), http://nptel.ac.in/courses/
106103116/19

6. Cheungt, S.C., Giannakopoulou, D., Kramer, J.: Verification of liveness properties
using compositional reachability analysis. Lecture Notes in Computer Science 1301,
227–243 (1997)

7. Cirstea, H., Kirchner, C.: rho-Calculus. Its Syntax and Basic Properties 53(9)
(1998)

8. Clarke, E.: Model Checking (2000)
9. Diosa, H., Dı́az Fŕıas, J.F., Gaona, C.M.: Especificación formal de arquitecturas de

software basadas en componentes: chequeo de corrección con cálculo ρarq. Revista
Cient́ıfica. Universidad Distrital Francisco José de Caldas (12), 156–171 (2010)

10. Diosa, H.A., Dı́az, J.F., Gaona C., M.: Cálculo para el modelado formal de ar-
quitecturas de software basadas en componentes: cálculo ρarq. Revista Cient́ıfica.
Universidad Distrital Francisco José de Caldas (12), 172–184 (2010)

11. Inverardi, A.B., Muccini, H.: Formal Methods in Testing Software Architectures.
In: Bernardo, M., Inverardi, P. (eds.) Formal Methods for Software Architectures.
pp. 122–147. Lecture Notes in Computer Science., Third International School on
Formal Methods for the Design of Computer, Communication and Software Sys-
tems, Springer (sep 2003)

12. Micskei, Z., Waeselynck, H.: The many meanings of UML 2 Sequence Diagrams:
a survey. Software & Systems Modeling 10(4), 489–514 (apr 2010), http://link.
springer.com/10.1007/s10270-010-0157-9

13. Milner, R.: Communicating and Mobile Systems: The Pi Calculus (1999)
14. Montoya Serna, E.: Métodos formales e Ingenieŕıa de Software. Revista Virtual

Universidad Católica . . . (30), 1–26 (2011), http://revistavirtual.ucn.edu.co/
index.php/RevistaUCN/article/view/62

15. Niehren, J., Muller, M.: Constraints for Free in Concurrent Computation. Asian
Computer Science Conference ACSC’95 (1995)

16. Object Management Group: OMG Unified Modeling Language (OMG UML). Ver-
sion 2.5. (March 2015)

17. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM
Transactions on Programming Languages and Systems 4(3), 455–495 (1982)

18. Parrow, J.: An Introduction to the pi-Calculus (2001), http://homepages.nyu.

edu/{~}cb125/Lambda/barendregt.94.pdf

19. Rico, J.A.: Representación visual de la ejecución de una arquitectura de software
basada en componentes con especificación formal en cálculo ρarq (2015)

20. Smolka, G.: A Calculus for Higher-order Concurrent Constraint Programming with
Deep Guards. Tech. rep., Bundesminister f́’ur Forschung und Technologie (1994)

21. Smolka, G.: A Foundation for Higher-order Concurrent Constraint Programming.
Tech. rep., Bundesminister f́’ur Forschung und Technologie (1994)

22. Wing, J.M.: FAQ on π-Calculus (December), 1–8 (2002)

