
Deconstructing GAs into Visual Software Components

Leidy Garzón-Rodríguez
Engineering School

District University of Bogotá
Colombia

lpgarzonr@correo.udistrital.edu.co

Henry Alberto Diosa
Engineering School

District University of Bogotá
Colombia

hdiosa@udistrital.edu.co

Sergio Rojas-Galeano
Engineering School

District University of Bogotá
Colombia

srojas@udistrital.edu.co

ABSTRACT
We envisage Genetic Algorithms (GA) as search-based opti-
misation techniques encompassing independent bio-inspired
operators and representations that are realizable as self-
contained deployable computational units. In other words,
we think of GAs as a set of software components conforming
to a formally–defined evolution-oriented composition model.
Furthermore, we imagine such components being assembled
on a visual programming–free board, much like prefabri-
cated electronic chips are wired up to build electronic de-
vices. Here we introduce Goldenberry-GA, a toolbox of vi-
sual software components complying with these premises
that has been built over the Orange framework for data min-
ing. The paper describes at user-level the suite of new re-
leased components (GeneticAlgorithm, InitialPopulation,
SolutionRepresentation, Selection, Mutation, Crossover),
including working examples that demonstrate some advan-
tages of the reuse and extension principles of its underlying
component–based software architecture. It also explains the
composition model specification of the toolbox and the soft-
ware design patterns that were taken into account during its
development. A qualitative comparative study with similar
Evolutionary Computation frameworks is reported so as to
highlight strengths and weaknesses of the toolbox, as well
as to point out directions for future work.
Goldenberry-GA is open-source under the New BSD Li-

cense. Downloading and installation guides are available at:
http://goldenberry-labs.org

Categories and Subject Descriptors
D.2.11 [Software]: Software Engineering—Software Archi-
tectures; I.2.8 [Computing Methodologies]: Artificial In-
telligence—Evolutionary Algorithms

Keywords
Component-based Software Development; Genetic Algorithms
Software; Visual Programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c© 2015 ACM. ISBN 978-1-4503-3488-4/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739482.2768466

1. INTRODUCTION
Evolutionary computation (EC) techniques rely on the ite-

rative application of stochastic–guided exploration/exploita-
tion operators over a set of candidate solutions to an op-
timisation problem. These operators along with the en-
coding/decoding mappings can be seen as loosely-coupled
computational modules designed according to a particular
EC model. We believe such modules can be seen as self-
contained software components with properly-specified com-
munication interfaces, enabling users to quickly implement
EC programs by piecing together compatible blocks, all the
more useful if feasible within a graphical simulated board en-
abling their visual inspection and execution. This is evoca-
tive of how hardware devices are built by glueing prefabri-
cated electronic chips through their connecting pins while
overlooking the details of their encapsulated circuits.

Motivated on these goals, we have embarked on decons-
tructing an emblematic EC technique, the Genetic Algo-
rithm (GA), into a collection of software components that
we call Goldenberry-GA. To this end, we firstly designed
the composition model, architecture and interfaces specifi-
cations; subsequently we built the suite of software compo-
nents featuring a user-friendly visual programming environ-
ment, provided by the Orange data–mining software work-
bench [6]. Our ultimate purpose is to provide EC users with
a new tool to benefit from the principles of component–based
software development, both at novice or expert level through
visual assemblage of existing components or object-oriented
programming of new components and experiments.

The paper starts describing the suite GA visual software
components through some illustrative working examples, then
discusses briefly its underlying composition model and archi-
tecture, along with its extension capabilities, strengths and
weaknesses compared to other existing GA software tools.
It closes suggesting possible avenues of future development.

2. OVERVIEW OF THE TOOLBOX

2.1 Prior work
The toolbox is integrated within Orange, an open-source

component-based framework for data mining [6], which was
chosen as deployment environment because it features a user-
friendly visual canvas for component’s assemblage. As far
as we know, to this date Orange does not include tools
for solving optimisation tasks with GAs or other stochastic
search-based algorithms, although a preliminary incarnation
of Goldenberry focusing on Estimation of Distribution Al-
gorithms (EDA) was previously released [16].

http://goldenberry-labs.org
http://dx.doi.org/10.1145/2739482.2768466

Figure 1: GA scheme assemblage using the visual Goldenberry-GA software components.

2.2 The suite of GA visual components
The analysis, design and development of the toolbox was

carried out considering representations and genetic opera-
tors related to the simple GA [10, 12], which are summarised
in Table 1. The resulting suite of components along with
a visual program illustrating the assemblage of a GA, are
shown in Figure 1. Some of their front-end configuration
screens are shown in Figure 2. A brief description of the
suite is given next. Technical and end–user specifications of
the contracts components must comply during assemblage
(sets of interfaces required and provided by each component)
are available at: http://goldenberry-labs.org/widgets.

GeneticAlgorithm. The core component con-
trolling the execution of a GA. It defines
six input interfaces allowing assemblage with
CostFunctionBuilder, InitialPopulation, So-
lutionRepresentation, Selection, Mutation

and Crossover. Additionally, it provides a user interface for
configuration of running parameters such as operator appli-
cation probabilities, number of evaluations, population size
and replacement strategy, as well as visualisation of single–
run results (see Figure 2, middle–top). On the other hand,
this component exposes an output interface involving ser-
vices allowing the execution, statistics gathering and best
solution retrieval from the GA. We remark that the only
required visual connection is to the CostFunctionBuilder

component. If no other input connection is detected, the GA
runs with a default configuration (binary coding, uniform
random initial population, tournament selection, one bit mu-
tation with pm = 0.01, one point crossover with pc = 0.6, 50
candidates, 80 generations and generational replacement).
Besides, notice that the execution’s flow of the GA is inde-

Table 1: Simple GA representations/operations
Solution
encoding Binary, Real

Initial
population Random, Seeded, Biased

Replacement
strategy Generational, Generational gap

Selection Tournament, Roulette wheel
Binary: One point, Two points

Crossover Real: AX, BLX-α, BLX-α-β, WHX
Custom
Binary: Flip one bit, Multiple bits

Mutation Real: Gaussian, Truncated Gaussian
Custom

pendent of the assemblage order with other components; in
fact, it only relies on the availability of such connections in
an asynchronous mode (when the GeneticAlgorithm is run,
every other connected component sends a signal indicating
their available services at the time of execution).

CostFunctionBuilder. The component allows
the definition of the function to be optimised (fit-
ness function). Its user interface includes a built–
in library of standard benchmark functions and a
text box for code–injection of custom functions

written as a Python script, including a convenient copy–
paste option on these scripts (see Figure 2, left–top). Its
output interface can be connected to the GeneticAlgorithm

or any other optimiser component. Since other optimisers
may not need a solution representation mapping, the num-
ber of problem variables must be defined here.

SolutionRepresentation. This component is
used to define the encoding of the candidate solu-
tions into chromosomes as well as the genotype–
phenotype mapping. The available representa-
tions are: direct real mapping, real scaled to the

unit interval, direct binary mapping and grey–code map-
ping. Its output interface complies with the corresponding
GeneticAlgorithm input interface. The final length of the
chromosome would depend on the number of variables de-
fined in CostFunctionBuilder and the chosen mapping.

InitialPopulation. This component specifies
several strategies for generation of the initial
population, including: random values (uniformly
distributed over the range defined for the genes),
seeded (particular instances of candidate solu-

tions are inserted into the initial population) and biased
(preferred subspaces represented by prototype individuals
defined with specific means and variances). Its configura-
tion user interface is shown in Figure 2, left–bottom. Its
output interface can be provided to the GeneticAlgorithm.

Selection. The component establishing the
selection operator. The available options are
roulette wheel and stochastic tournament (code–
injection of custom selection techniques is in-
tended for future versions). Its configuration

user interface is shown in Figure 2, middle–bottom. Its out-
put interface can be connected to the GeneticAlgorithm.

http://goldenberry-labs.org/widgets

Figure 2: User interfaces for some of the Goldenberry-GA components in Figure 1. Clock-wise from bottom
left: InitialPopulation, CostFunctionBuilder, GeneticAlgorithm, Crossover, ScatterPlot, Selection.

Crossover. The component defining the settings
for the recombination operator. Depending on
the solution representation, its user interface pro-
vides a library of built–in widely–known opera-
tors, such as one point and two point crossover

for binary chromosomes, or heuristic crossover (WHX),
blend crossover (BLX-α and BLX-α-β) and uniform arith-
metical (AX) crossover for real–coded chromosomes (see
Figure 2, right–top). Likewise the CostFunctionBuilder,
this component also enables Python script code–injection for
further customisation of the crossover operation. Again, its
output interface can be provided to the GeneticAlgorithm.

Mutation. A component similar to the previous
one, but focusing on the definition of the muta-
tion operator. The available operators for binary
genotypes are: one bit and multiple bit flip muta-
tion. In the case of real–coded genotypes it pro-

vides the truncated Gaussian mutation [15]. Additionally,
Python script code–injection is also enabled.

BlackBoxTester. This component is intended
to visualise and compare results between multi-
ple executions of several GeneticAlgorithms or
other optimisers, which must be provided as in-
put interfaces. The user front–end collects the

results in a table format summarising the statistics of the
multiple repetitions or the details of individual runs. These
tables can also be exported as an output interface to the
Orange’s Save component.

2.3 Working examples
This section illustrates the use of the toolbox in solving

some typical benchmark optimization problems by assem-
bling GAs combining different genetic operators. We defined
an experimental protocol similar to [3], as follows.

Problems. Two continuous–domain problems were chosen,
Rastrigin’s (F1) and Griewank’s (F2), with dimensionality

d = 4. We report normalized fitnesses, Fi =
1

1− fi
, where:

f1(x) = −

(
10d+

d∑
k=1

x2k−10 cos (2πxk)

)
; x ∈ [−5.12, 5.12]d

f2(x) = −

(
1+

d∑
k=1

x2k
4000

−
d∏

k=1

cos

(
xk√
k

))
; x ∈ [−600, 600]d

Since these are originally minimisation problems, we maxi-
mise their negations, as suggested in [12].

GAs. Four GAs obtained as the combination of two selec-
tion (Roulette Wheel and Stochastic Tournament) and two
crossover operators (WHX and BLX-α-β), were tested:

GA1 ≡ (RW+WHX); GA2 ≡ (RW+BLX-α-β);

GA3 ≡ (ST+WHX); GA4 ≡ (ST+BLX-α-β).

GA parameters. Population size: 50 individuals; termi-
nation criterion: 80 generations per 100 repetitions; replace-
ment strategy: generational; pc = 0.6 and pm = 0.01.

Chromosome representation. Direct real mapping with
4 genes (4 dimensions or variables).

Figure 3: Average GA performance in solving F1.

Figure 4: Average GA performance in solving F2.

10th generation 80th generation

(µ± σ × 10−1) (µ± σ × 10−1)

F1 F2 F1 F2

GA1 0.518±1.327 0.788±1.243 0.949±0.938 0.992±0.095

GA2 0.565±1.197 0.905±0.543 0.967±0.632 0.993±0.068

GA3 0.466±1.453 0.716±1.488 0.844±1.353 0.982±0.132

GA4 0.527±1.276 0.885±0.562 0.858±1.055 0.986±0.101

Table 2: Average GA statistics over 100 repetitions.

Figure 1 shows the visual scheme that was assembled for
solving problem F1 withGA1; similar assemblages were made
for GA2, GA3 and GA4, and also for problem F2 (schemes
available at: http://goldenberry-labs.org/benchmarks).
The results were collected using the BlackBoxTester compo-
nent and exported to a tabular data file using the Save com-
ponent, so as to conduct a graphical analysis with a special–
purpose plotting tool. Observe that a quick inspection of
the results was also possible by glueing the output to the
ScatterPlot component (see Figure 2, bottom–right). Wor-
thy of attention is the smooth integration of Goldenberry-GA
with the three aforementioned third–party components.

GAs average performance is reported in Figure 3 and 4,
demonstrating their effectiveness in solving these problems
(GA2 performing slightly better). Besides, instantaneous
statistics of the GAs at the 10th and 80th generations are re-
ported in Table 2, corroborating the average successful con-
vergences towards the optimum (again, GA2 exhibits faster
convergence rates).

3. SOFTWARE ARCHITECTURE
Goldenberry-GA was conceived using the software archi-

tectural style of independent components [2], a design con-
cept where software is built as a set of self–contained com-
putational units that communicate to each other through
messages, in order to request and provide services (in our
case, pertaining to a GA system). Such messages are sent
and received through ports or interfaces that are negotiated
between the components within the local execution environ-
ment (in our case, the environment is provided by Orange).

The descriptive architecture was obtained using the Uni-
fied Process and Unified Modeling Language adapted to
component–based software development [5]. The initial re-
sult of the inception stage in the process was the Goldenberry-
GA prescriptive architecture, which defined the platform–inde-
pendent conceptual components of the GA prior to develop-
ment (the interested reader is referred to [14] for details of
such prescriptive architecture).

3.1 Descriptive architecture
The descriptive architecture was built in the elaboration

stage, when design and technological decisions are taken
(e.g. the choice of the object-oriented paradigm for com-
ponent development, Python as the programming language,
Orange as the execution environment, reusing some existing
components) on the basis of the aforementioned prescrip-
tive model. As a result we obtained the component–based
descriptive architecture that is shown in Figure 5. Both pre-
scriptive and descriptive architecture models are available at
http://goldenberry-labs.org/models.

The architecture comprises two layers. On the one hand,
the business logical layer corresponds to the inner compo-
nents implementing the actual computations carried out by
the GA (tagged with the “Mgr” suffix). As it can be seen
in the figure, the core inner component GbGAMgr coordi-
nates the execution of the GA. The surrounding compo-
nents provide output interfaces for each service required by
the GA when it is executed. Five inner components were
designed for this purpose: GbSolutionRepMgr, GbInitPop-

Mgr, GbSelectorMgr, GbCrossoverMgr and GbMutatorMgr.
On the other hand, the user–interaction layer consists of

visual components (tagged with the“Widget”suffix) that are
deployable over the Orange graphical canvas. They serve as
visual companions to the inner components in the business
layer. Each widget exposes the interfaces or ports they pro-
vide for assemblage with other widgets in the canvas. Addi-
tionally they expose the external interfaces that realize di-
alogue windows allowing users to setup parameters and visu-
alise the output of particular services (ISolutionRepWidget,
IGAWidget, IBlackBoxWidget, IInitPopWidget, ISelec-

torWidget, ICrossoverWidget, IMutatorWidget and
ICostFunctionWidget). Examples of realizations of such
user interface windows are shown in Figure 2.

Each visual component specifies a formal contract of its
interfaces, enabling its connection with other components.
However, some restrictions such as the admission of genetic
operators by a particular chromosome representation must
be ensured by the user, as currently the software verifies
contract agreement only at the abstract level of the interface
specification; if the actual realizations are incompatible, a
runtime error would occur.

Lastly, notice that GbCostFunctionWidget and GbBlack-

BoxWidget were provisioned from the previous release [16].

http://goldenberry-labs.org/benchmarks
http://goldenberry-labs.org/models

Figure 5: The descriptive architecture of Goldenberry-GA.

The widget/business component duality also determines
two layers of user interaction. Firstly, the widget layer is in-
tended for novice users preferring a programming–free work-
bench where swift GA realizations can be done with mini-
mal effort by just visually connecting pre-fabricated com-
ponents. Secondly, the business components layer allows
expert users for rapid prototyping of new intuitions or com-
putational techniques embodied within the existing or new
derived components using scripting and programming skills.
Both layers admit extension mechanisms for customisation
purposes, as we shall explain in later sections.

3.2 Design patterns
During elaboration of the Goldenberry-GA architecture,

the following software design patterns were applied [7].

Factory method. The factory method pattern was applied
for the design of the GBSolutionRepMgr component, as it is
shown in the class diagram of Figure 6. An abstract class
Encoder encapsulates the two methods required for geno-
type to phenotype mapping. Specific mapping techniques
are implemented as realisations of this class, for example
DirectMappingScaledUnitInterval, GreyCode-Mapping and
so on. The factory class is EncoderFactory which contains
the method get_encoder() that instantiates a concrete ob-
ject of any of these encoders. In this way, the SolutionRep

class can delegate into the factory the calls to the actual
mapping operations, depending on the encoder chosen by
the user. This approach enables Goldenberry-GA to eas-
ily extend the set of available solution representations: the
user just needs to add a Phyton class implementing the data
structures and algorithms for the new genotype–phenotype
mapping as long as it implements the Encoder abstract class.
Then, in its next execution, the GbSolutionRepMgr compo-
nent will recognise it and make it available in its correspond-
ing widget. This pattern was also applied to implement the
GbInitPopMgr component.

Figure 6: Excerpt of a model applying the factory
method pattern to the encoding of solutions.

Strategy. The strategy pattern was applied for the design
of the GbMutatorMgr component, as it is shown in the class
diagram of Figure 7. In this case, the pattern allows the
component to change dynamically its mutation strategy du-
ring execution of the GA. Here an abstract class Mutator-

Strategy encapsulates the mutate() method that would be
implemented as concrete realizations of this class, for exam-
ple OneBitBinaryMutation, TruncateGaussMutation and so
on. The strategy class is MutatorContext which is able
to instantiate during runtime a particular mutator strat-
egy, depending on the choice stored as a String in the mu-

tation_method attribute of the Mutator class. When the
GbGAMgr uses the IMutatorMgt interface, the latter dele-
gates into the MutatorContext the instantiation of the mu-
tator strategy according to the name assigned to the muta-

tion_method attribute at that point. The pattern was also
applied to the GbCrossoverMgr and GbSelectorMgr compo-
nents so as to allow changing or adapting the different ge-
netic strategies dynamically during execution of a GA.

Figure 7: Excerpt of a model applying the strategy
pattern to dynamically set the mutation operator.

As an aside comment, the complete set of structural and
behavioural models applying these patterns for each compo-
nent are available at http://goldenberry-labs.org/models.

3.3 Architectural advantages
Owing to its underlying architecture, Goldenberry-GA ex-

hibits two important software quality attributes [9]:

Maintainability. This attribute is verified easily from the
point of view of repairability, because any faulty component
can be fixed in an isolated way without compromising the
remainder components of the GA system. Similarly from
an evolvability perspective, any obsolete component can be
replaced with another fresh component implementing up-
dated technologies, as long as it complies with the contrac-
tual interface model of the old one. For example, it would be
possible to build a new compatible GbCrossOverMgr compo-
nent using a distributed computing model, provided that it
exposes an ICrossOverMgt and ICrossOverSetUp interfaces
and its contractual specification.

Reusability. Since each component is a detachable inde-
pendent computational unit, it can be assembled into other
metaheuristics schemes complying with the Goldenberry-GA
compositional model. As a matter of fact, some compo-
nents such as CostFunctionBuilder or BlackBoxTester can
be reused indistinctly in GAs or in EDAs. Accordingly, we
anticipate that several Goldenberry components would be
reusable in other EC methods such as memetic algorithms
or local search metaheuristics.

4. EXTENSION CAPABILITIES
The toolbox can be adapted to particular needs in three

different levels of extensibility. The basic level allows end-
users to define custom cost functions for the GA to optimise.
The intermediate level allows GA researchers to try out new
operators and representations that can be specialised from

Figure 8: Example of customising a cost function.

the component collection comprised in the toolbox. The ad-
vanced level addresses the implementation of new stochastic
search components based on the Goldenberry-GA software
architecture. Each level of extensibility is explained next.

4.1 Cost function customisation
This is the core functionality of the CostFunctionBuilder

component. Apart from including a predefined library of
benchmark problems (Sphere, Rastrigin, Rosenbrock, Schwe-
fel, Step, Griewank, OneMax, ZeroMax, LeadingOnes), the
user is able to inject a Python function script specifying the
computation of the fitness (cost) of a candidate solution

given as an input parameter to the script. The function
should comply with the mapping and domain that would
have been previously defined in the SolutionRepresentation
widget. The easiest way of writing the function is to make a
copy of one of the scripts in the library of problems, and then
tailor it to the custom cost function. For example, suppo-
se we want the GA to find the optimal configuration of 64
white and black tiles on a 2D board according to the fo-
llowing energy function (which is actually a parity-function
defining the energy of a standard checkers board):

E(B) =

8∑
i=1

8∑
j=1

rijbij + (1− rij)(1− bij),

where boardB = {bij , 1 ≤ i, j ≤ 8}, bij ∈ {0 (white), 1 (black)}
y rij is the cell parity, rij = (i+ j) mod 2. The correspon-
ding Python script is illustrated in Figure 8, where the 2D
board is mapped to the 1D vector solution, and the final
cost is reported as the negation of E, because again, instead
of maximising we seek to minimise the function.

There are two interesting observations worth to mention
here. The first one is that little knowledge of programming
are needed to define the custom cost function; just basic no-
tions of algorithmic structures (if-else conditionals, while
or for loops, arithmetic operators) and its syntax in Python
which is conventional. The second observation is that the
CostFunctionBuilder component provides an output inter-
face that can be connected not only to the GeneticAlgorithm
but also to other optimisers, such as the components cGA,
UMDA or TILDA from the EDA release [16].

http://goldenberry-labs.org/models

Figure 9: Excerpt of a model extending a GA (left)
to a Simulated Annealing component (right).

4.2 GA component specialisation
As mentioned before, this level of extensibility caters for

GA researchers experimenting with tailor-made versions of
the standard operators or encoders or conceiving new ones.
Two choices are available for this end. First, the user may
add a new operator to the predefined libraries in the Cross-

over or Mutation components, by using the same Python-
script code–injection described earlier for the custom fitness
function. The second choice is to resort to the aforemen-
tioned strategy pattern, by adding concrete genetic operator
objects implementing new algorithms or data structures.

4.3 Brand–new EC components
This is the highest abstract level of extensibility, provi-

ding researches with the possibility of deriving components
for known or novel EC or stochastic-based search techniques,
using the Goldenberry-GA architecture as a framework of re-
ference. To exemplify this point, let us assume that we want
to implement a new component for the SimulatedAnnealing
metaheuristic [11]. To this end, we would have to extend the
class model of the existing GbGAMgr component in the way
shown in Figure 9. As it can be seen, both GbGAMgr and
GbSAMgr realise the GbBaseOptimiser class with a particu-
lar implementation of the search() method which would be
dependant on the corresponding metaheuristic. The com-
plete implementation and examples of visual schemes using
this new SimulatedAnnealing component are available at
http://goldenberry-labs.org/sa.

5. COMPARISON WITH OTHER TOOLS
In this section we attempt to highlight the main diffe-

rences with some of the established GA and other meta-
heuristic optimisation frameworks, also known as MOFs.
When unambiguous, we will refer to the combined releases
of GA and EDA components as simply Goldenberry. The
comparative study was carried out considering ECJ, Para-
disEO, EvA2, FOM, JCLEC, Opt4j, EasyLocal, MALLBA
and HeuristicLab, following the six criteria and scoring check–
lists defined in [13]:

C1: Metaheuristics techniques

C2: Adaptation to the problem and its structure

C3: Advanced characteristics

C4: Global optimisation process support

C5: Design, implementation and licensing

C6: Documentation and support

The results of the evaluation of Goldenberry are summa-
rised in Figure 10 along with the scoring of the other MOFs
as originally reported in [13]. The scores in each criterion are
scaled to the unit interval and summed up to a maximum
of 6; Goldenberry obtained a overall score of 2. The details
of our evaluation in each criteria are available at http://

goldenberry-labs.org/mof-eval.
It can be seen that the toolbox is particularly strong in

criteria C5 and C4 as expected, since these are related to
software engineering best practices aspects (C5), and graphi-
cal user interface, interoperability and experiment design
(C4). In these respects Goldenberry compares favourably
with ECJ, ParadisEO, JCLEC and Opt4j (C5), and with
JCLEC, OAT and HeuristicLab (C4). Now regarding C2,
Goldenberry scores unsurprisingly adequate, taking into ac-
count that this criteria is strongly related to the GA aspects
it was designed for, including solution encoding, genetic ope-
rators and fitness function customisation; in this sense the
toolbox is on par with HeuristicLab, EVA2 and ParadisEO.

By contrast, it is evident that the main weaknesses are
related to C1 and C6. Concerning C1, Goldenberry ranks
lower than the other MOFs. There is ample room to improve
here, since in its current release it only involves GA and EDA
techniques. In this respect we expect to take advantage
of the extensibility mechanisms described earlier. On the
other hand, C6 is also another avenue of improving as the
toolbox is in its early stage of community awareness and
dissemination. Lastly, Goldenberry currently lacks suppor-
ting of advanced characteristics such as hybridisation and
distributed computing; thus, its performs poor in criterion
C3, where other tools excel, particularly ParadisEO, FOM
or MALLBA.

An additional distinction worth to remark is that as far
as we understand, none of the other evaluated MOFs de-
voted to GAs was built from a visually-enabled component
architecture faithful to the component-based software de-
velopment principles [5]; in fact, most of them adhere to an
object-oriented or structured programming paradigm. Some
initiatives such as OSGiLiath [8], MALLBA [1] and Para-

Figure 10: Goldenberry vs. other MOFs

http://goldenberry-labs.org/sa
http://goldenberry-labs.org/mof-eval
http://goldenberry-labs.org/mof-eval

disEO [4] in spite of being component-based libraries, only
support scripting mechanisms for component assemblage.
Furthermore, although some tools feature visual program-
ming environments (e.g. the operator graph of HeuristicLab
[17]) allowing users to connect computational modules, ul-
timately such programs represent dataflows with no prede-
fined assumptions or guarantees on the intermediate compu-
tational steps involved throughout. Rather than a dataflow,
the visual assemblage in Goldenberry represent provision
and consumption of services precisely specified as contracts
that each component is liable to comply, constituting a guar-
antee of reusability in other EC schemes conforming with
said composition specification.

It is also important to note that Goldenberry-GA was not
originated as a new framework, but as an add-on to the
existing Orange platform [6], with a view to extend its ap-
plication domain to the field of EC optimisation. In this
regard it is anticipated that the suite of Goldenberry com-
ponents can be integrated as function optimisers in other
higher-level data mining analysis. We hope with this tool to
promote cross-fertilizations between these two fields, from
the researcher and practitioner point of view.

Nevertheless, we are aware that in its current release,
Goldenberry is work in progress towards a fully developed
and robust EC framework. The comparison study has pointed
out some of the current strengths that can be improved in
new versions. And more importantly yet, the evaluation has
also highlighted flaws worthy of attention in future work, in
order to improve its encouraging overall scoring of 2/6.

6. CONCLUSION AND FUTURE WORK
Two interesting features of Goldenberry-GA are worth to

emphasize. Firstly, its programming–free graphical interface
is advantageous for practitioners looking for a friendly vi-
sual environment where GA experiments can be easily being
arranged, executed and visualised with virtually no coding
needed, only wiring up prefabricated components. Secondly,
the toolbox is also suitable for skilled users researching new
genetic operators or algorithms than can be extended or
composed programmatically from the suite of existing com-
ponents. The latter is possible because the toolbox com-
plies with the openness and reuse principles of component–
based software development and design patterns. The ap-
plication of these principles was demonstrated by the in-
tegration with the Orange framework (including incorpo-
ration into its canvas specification and reusing of existing
data–processing components such as ScatterPlot and Save)
and the extension of the proposed architecture to implement
other stochastic search algorithms (SimulatedAnnealing).

In the same direction, being a new tool aimed at EC en-
thusiasts and researchers, it is expected that the release
of Goldenberry-GA into the Orange data-mining platform
may promote the development of a community market of
evolutionary or stochastic population–based or bio–inspired
components building upon the proposed descriptive archi-
tecture. This is in fact accordant with the ultimate goal
of the component–based software paradigm, in the sense of
making easier the creation of high–quality EC programs by
reusing or adapting off–the–shelf components supplied by
specialised software factories or laboratories. In this direc-
tion, an obvious immediate target would be the develop-
ment of new components for combinatorial representations
and operators, multi–objective fitness function builders and

other metaheuristics [12]. It is also alluring to address the
weaknesses and to improve on the strengths discussed in
previous sections. Clearly, enabling code injection in the
Selection component and automatic verification of agree-
ment between genetic representations and operations using
the mediator design pattern [7], are a priority.

As a closing remark, equally interesting would be to ex-
plore the benefits of using other programming paradigms in
the implementation of the component–based architecture.
In its current release Goldenberry-GA uses the object–oriented
paradigm in Python, but for critical–mission tasks or time–
efficiency constraints, the declarative and concurrent ap-
proaches for component implementation might be advan-
tageous. Notice that such an endeavour would require no
changes on the component prescriptive architecture which
is independent of language or programming technology.

Acknowledgements. We thank the anonymous review-
ers for their thoughtful observations and suggestions.

7. REFERENCES
[1] E. Alba, G. Luque, J. Garcia;Nieto, G. Ordonez, and

G. Leguizamon. MALLBA, a software library to design efficient
optimisation algorithms. In Int. J. Innov. Comput. Appl.,
pages 74–85, 2007.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture
in Practice. Pearson Education, 2012.

[3] D. Broglio Carvalho, J. C. Nunes Bittencourt, and
T. D’Martin Maia. The Simple Genetic Algorithm performance:
A comparative study on the operators combination. In
INFOCOMP 2011, The First International Conference on
Advanced Communications and Computation, 2011.

[4] S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A framework
for the reusable design of parallel and distributed
metaheuristics. Journal of Heuristics, 10(3):357–380, 2004.

[5] J. Cheesman and J. Daniels. UML Components: A Simple
Process for Specifying Component-Based Software.
Component Software Series. Addison-Wesley, Londres, 2000.

[6] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar,
M. Milutinovič, M. Možina, M. Polajnar, M. Toplak, A. Starič,
M. Štajdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and
B. Zupan. Orange: Data mining toolbox in Python. Journal of
Machine Learning Research, 14:2349–2353, 2013.

[7] R. J. Gamma Erich, R. Helm and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[8] P. Garcia-Sanchez, J. Gonzalez, P. Castillo, M. Arenas, and
J. Merelo-Guervos. Service oriented evolutionary algorithms.
Soft Computing, 17(6):1059–1075, 2013.

[9] C. Ghezzi, M. Jazaheri, and D. Mandrioli. Software Qualities
and Principles. Chapman and Hall/CRC, 2004.

[10] D. E. Golberg. Genetic algorithms in search, optimization,
and machine learning. Addion wesley, 1989.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, 1983.

[12] S. Luke. Essentials of Metaheuristics. Lulu, 2nd. edition, 2013.

[13] J. A. Parejo, A. Ruiz-Cortés, S. Lozano, and P. Fernandez.
Metaheuristic optimization frameworks: a survey and
benchmarking. Soft Computing, 16(3):527–561, 2012.

[14] L. G. Rodriguez, H. A. Diosa, and S. Rojas-Galeano. Towards a
component-based software architecture for Genetic Algorithms.
In Proceedings of the 9th Colombian Computing Conference
(9CCC), pages 1–6. IEEE, 2014.

[15] S. Rojas-Galeano and N. Rodriguez. A memory efficient and
continuous-valued compact EDA for large scale problems. In
Proceedings of GECCO ’12, pages 281–288. ACM, 2012.

[16] S. Rojas-Galeano and N. Rodriguez. Goldenberry: EDA visual
programming in Orange. In Proceedings of GECCO ’13, pages
1325–1332. ACM, 2013.

[17] S. Wagner, G. Kronberger, A. Beham, M. Kommenda,
A. Scheibenpflug, E. Pitzer, S. Vonolfen, M. Kofler, S. Winkler,
V. Dorfer, and M. Affenzeller. Advanced Methods and
Applications in Computational Intelligence, volume 6, chapter
Architecture and Design of the HeuristicLab Optimization
Environment, pages 197–261. Springer, 2014.

	Introduction
	Overview of the toolbox
	Prior work
	The suite of GA visual components
	Working examples

	Software Architecture
	Descriptive architecture
	Design patterns
	Architectural advantages

	Extension capabilities
	Cost function customisation
	GA component specialisation
	Brand–new EC components

	Comparison with other tools
	Conclusion and Future Work
	References

